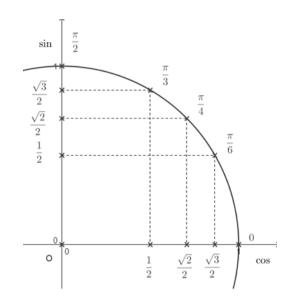
I. Rappel sur les angles

1. Valeurs particulières

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1



2. Relations usuelles



$$cos(-x) = cos(x)$$

$$sin(-x) = -sin(x)$$

$$cos(\pi + x) = -cos(x)$$

$$sin(\pi + x) = -sin(x)$$

$$cos(\pi - x) = -cos(x)$$

$$sin(\pi + x) = sin(x)$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$$
$$\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

$$\cos\left(\frac{3\pi}{2} + x\right) = \sin(x)$$

$$\sin\left(\frac{3\pi}{2} + x\right) = -\cos(x)$$

$$\cos\left(\frac{3\pi}{2} - x\right) = -\sin(x)$$

$$\sin\left(\frac{3\pi}{2} - x\right) = -\cos(x)$$

II. Les nombres complexes

Les nombres complexe sont une interprétation algébrique du plan (\mathbb{R}^2) . On note $\mathbb C$ l'ensemble des nombres complexes.

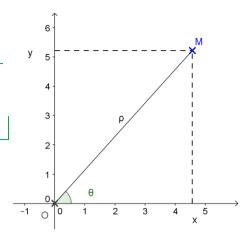
<u>Définition</u>: On note i (j en électronique) le nombre complexe tel que $i^2 = -1$.

a. Notation algébrique

 \triangleright Définition : On appelle nombre complexe z de l'ensemble \mathbb{C} . l'affixe du point M de coordonnées (x, y) tel que :

$$z = x + iy$$
.

Exemple : Le point A de coordonnées (3;4) a pour affixe $z_A = 3 + 4i$.



b. Module et argument

 \triangleright Définition : On module du nombre complexe z de l'ensemble $\mathbb C$, la distance OM:

$$|z| = \rho = \sqrt{x^2 + y^2}.$$

Propriétés: Pour tous nombres complexes z et z'

$$\begin{aligned} |zz'| &= |z||z'| \\ \left|\frac{z}{z'}\right| &= \frac{|z|}{|z'|} \quad (\text{avec } z' \neq 0) \\ |z^n| &= |z|^n \\ |z + z'| &\leq |z| + |z'| \end{aligned}$$

Exemples:

Soit le point M d'affixe z = 1 + 5i. Le nombre complexe z=1+5i a pour module $|z|=\sqrt{1^2+5^2}=\sqrt{1+25}=\sqrt{26}$. C'est la longueur du segment $OM = \sqrt{26}$.

Soient les points A et B d'affixes respectives $z_A = 4 - 2i$ et $z_B = 1 + 2i$. Calculer la longueur AB:

$$AB = |z_B - z_A| = |4 - 2i - (1 + 2i)| = |3 - 4i| = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$

Exercice 1 : déterminer le module des complexes :

1)
$$z_1 = 2 + 2i\sqrt{3}$$

2)
$$z_2 = (1+2i)(1-2i)$$
 3) $z_3 = -3-\sqrt{5}$

3)
$$z_3 = -3 - \sqrt{5}$$

c. Argument

<u>Définition</u>: On appelle argument d'un nombre complexe z de l'ensemble $\mathbb C$, l'angle entre $\vec u$ et \overline{OM} $arg(z) = (\vec{u}, \overrightarrow{OM}) [2\pi].$

Propriétés: Pour tous nombres complexes z et z' non nuls.

$$\arg(zz') = \arg(z) + \arg(z')$$

$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$$

$$\arg(z^n) = n \arg(z).$$

Exemples:

- Le nombre complexe $z = \sqrt{3} + i$ a pour argument : $\arg z = \frac{\pi}{6}$
- L'angle entre les vecteurs \vec{u} et \vec{v} d'affixes respectives z z' est noté $(\vec{u}$, \vec{v}) est donné par :

$$(\vec{u}, \vec{v}) = \arg\left(\frac{z'}{z}\right)[2\pi].$$

Exercice 2 : calculer les arguments des nombres complexes :

1)
$$z = 2 - 2i$$

2)
$$z = -2i$$

3)
$$z = \frac{4}{1-i}$$

Exercice 3 : Argument de :

1)
$$z^8$$
 avec $z = \sqrt{3} + i$

2)
$$z = \frac{1+i}{\sqrt{2}-i\sqrt{2}}$$

d. Conjugué

<u> \triangle Définition</u>: Soit z un nombre complexe d'affixe z=a+ib, on appelle conjugué de z et on note \bar{z} le nombre complexe :

$$\bar{z} = a - ib$$
.

$$\overline{z^n}=\bar{z}^n$$

$$|\bar{z}| = |z|$$

$$z\bar{z} = |z|^2$$

$$arg(\bar{z}) = arg(z).$$

Remarque : Le troisième point est utilisé pour simplifier les quotients ; exemple :

Soient z et z' deux nombres complexes non nuls alors :

$$\frac{z}{z'} = \frac{z\overline{z'}}{z'\overline{z'}} = \frac{z\overline{z'}}{|z'|^2}.$$

Propriétés : Pour tous nombres complexes z et z' non nul on a :

$$\overline{z+z'}=\bar{z}+\bar{z'}$$

$$\overline{zz'} = \bar{z}\overline{z'}$$

$$\overline{\left(\frac{Z}{Z'}\right)} = \frac{\bar{Z}}{\overline{Z'}}$$

$$\overline{z^n} = \overline{z}^n$$

e. Notation trigonométrique

ightharpoonupDéfinition: On appelle notation trigonométrique d'un nombre complexe z de $\mathbb C$:

$$z = \rho(\cos\theta + i\sin\theta).$$

Retour sur exemple : Pour trouver l'argument du nombre complexe $z=\sqrt{3}+i$, on utilise la notation trigonométrique.

Dans un premier temps, on calcule le module : $|z| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$.

Ensuite, l'écrite se transforme en $z=2\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)$.

Il s'agit ensuite de trouver l'angle dans le cercle trigonométrique pour le point de coordonnées $\left(\frac{\sqrt{3}}{2};\frac{1}{2}\right)$ c'est-à-dire déterminer θ tel que $\cos\theta=\frac{\sqrt{3}}{2}$ et $\sin\theta=\frac{1}{2}$.

Il s'agit de l'angle $\theta = \frac{\pi}{6} \ [2\pi]$.

f. Notation exponentielle

Au regard de ces propriétés et de celle de la fonction exponentielle réel, pour simplifier les calculs, on adopte la **notation** exponentielle :

 $\underline{\qquad}$ **Définition**: On appelle notation trigonométrique d'un nombre complexe z de $\mathbb C$:

$$z = \rho e^{i\theta}$$
.

oxtimes Propriétés : Pour les nombres complexes z et z' de notation exponentielle $e^{i heta}$, $e^{i heta'}$

$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta + \theta')}$$

$$e^{i\theta}$$

$$\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}.$$

Exercice 4 Écrire sous forme trigonométrique $z=1+i\sqrt{3}$ et $z'=\left(\frac{1}{2}\right)(1-i)$

Poser Z=zz'. Déterminer l'écriture algébrique de Z puis son écriture trigonométrique En déduire $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$

g. Vision Vectoriel

<u>Note importante</u>: Un nombre complexe est considéré comme un vecteur de $\mathbb{R}^2 \simeq \mathbb{C}$. Le point M d'affixe z est plutôt vue comme le vecteur \overrightarrow{OM} et permet de définir la somme deux nombres complexes comme la somme de deux vecteurs.

Exemple: Soient les points A(1;2) et B(4;3) d'affixes respectives $z_A=1+2i$ et $z_B=4+3i$. L'affixe du point C est : $z_C=z_A+z_B=5+5i$ peut être vue comme :

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$$
.

h. Exercices (lien)