

I. Généralité

a. L'ensemble de définition

Remarque: Elle provient de la modélisation faite du problème.

Exemples mathématiques: La fonction f définie par f(x) = 2x - 4 est définie sur \mathbb{R} .

La fonction g définie par $g(x) = \frac{1}{x}$ est définie sur \mathbb{R}^* .

La fonction h définie par $h(x) = \sqrt{x}$ est définie sur \mathbb{R}^+ .

Note : l'ensemble \mathbb{R} représente tous les nombre réels (exemple : 0; -1; $\sqrt{2}$; π ; 1,4, 10^{10} etc ...)

b. Les variations

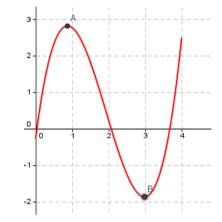
i. Extrémum d'une fonction sur un intervalle

ightharpoonup : Soit f une fonction continue sur un intervalle I, on appelle extrémum de f sur I:

- Un maximum M réel tel que pour tout $x \in I$, $f(x) \le M$.
- Un minimum m réel tel que pour tout $x \in I$, $f(x) \ge m$.

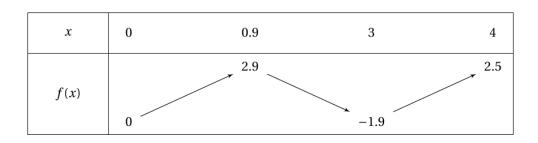
Exemple : On a tracé la fonction g ci-dessous :

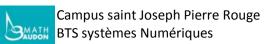
■ Dans le menu CALCUL les fonctions maximum et minimum permette d'en trouver une approximation.



- ii. <u>Sens de variation d'une fonction sur un</u> intervalle (monotonie)
- <u>Définition</u>: Soit f une fonction définie sur un intervalle I de $\mathbb R$ et pour tous a et b deux réel de I tel que a < b:
- f(a) < f(b), on dit que la fonction f est croissante.
- f(a) > f(b), on dit que la fonction f est **décroissante**.
- f(a) = f(b), on dit que la fonction f est constante.

 $\underline{\text{Exemple}}$: Sur l'exemple précédent, la fonction g est croissante décroissante, puis croissante. On représente ces informations sous forme d'un tableau de variation :





c. Limites

i. Théorèmes générale

Théorème 1 : (somme de fonction) Soit f et g deux fonctions définies sur un intervalle I de \mathbb{R} , et a et b deux réels.

- Si f(x) tend vers a et g(x) vers b alors f(x) + g(x) tend vers a + b.
- Si f(x) tend vers a et g(x) tend vers $+\infty$, alors f(x) + g(x) tend vers $+\infty$.
- Si f(x) tend vers a et g(x) tend vers $-\infty$, alors f(x) + g(x) tend vers $-\infty$.
- Si f(x) tend vers $+\infty$ et g(x) tend vers $+\infty$, alors f(x) + g(x) tend vers $+\infty$.
- Si f(x) tend vers $-\infty$ et g(x) tend vers $-\infty$, alors f(x) + g(x) tend vers $-\infty$.

Remarque : Si f(x) tend vers $-\infty$ et g(x) tend vers $+\infty$, alors on ne peut conclure sur la limite de f(x) + g(x) c'est une forme indéterminée.

Exdemples : Soient trois fonctions définies sur leurs domaines de définition respectifs :

$$f(x) = x^{2} - 2x - 14 \qquad \mathcal{D}_{f} = \mathbb{R}$$

$$g(x) = \sin(x) + \cos(x) \qquad \mathcal{D}_{g} = \mathbb{R}$$

$$h(x) = \frac{1}{x} + \frac{1}{x^{2}} \qquad \mathcal{D}_{h} = \mathbb{R}^{*} = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x^{2} - 2x - 14) = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^{2} - 2x - 14) = \lim_{x \to -\infty} x^{2} = +\infty$$

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \left(\frac{1}{x} + \frac{1}{x^{2}}\right) = 0^{-}$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \left(\frac{1}{x} + \frac{1}{x^{2}}\right) = 0^{+}$$

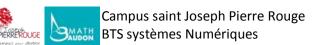
Théorème 2 : Soit f et g deux fonctions définies sur un inervalle I de \mathbb{R} , et a et b deux réels.

- Si f(x) tend vers a et g(x) tend vers b, alors $f(x) \times g(x)$ tend vers ab.
- Si f(x) tend vers a (avec $a \neq 0$) et g(x) tend vers $+\infty$, alors $f(x) \times g(x)$ tend vers $\pm \infty$ selon le signe de a.
- Si f(x) tend vers $\pm \infty$ et g(x) tend vers $\pm \infty$, alors $f(x) \times g(x)$ tend vers $\pm \infty$ selon la règle du produit.

Remarque : Si f(x) tend vers 0 et g(x) tend vers $\pm \infty$, alors on ne peut conclure sur la limite de $f(x) \times g(x)$ c'est une forme indéterminée.

Théorème 3 : Soit u une fonction définie sur un intervalle I de $\mathbb R$ telle que u ne s'annule pas sur I.

- Si u(x) tend vers $\pm \infty$, alors $\frac{1}{u(x)}$ tend vers 0.
- Si u(x) tend vers un réel a non nul, alors $\frac{1}{u(x)}$ tend vers $\frac{1}{a}$.
- Si u(x) tend vers 0 et est strictement positif sur I, alors $\frac{1}{u(x)}$ tend vers $+\infty$.
- Si u(x) tend vers 0 et strictement négatif sur I, alors $\frac{1}{u(x)}$ tend vers $-\infty$



<u>Exemple</u>: Limite en 0 de la fonction $x \mapsto \frac{1}{\sqrt{x}}$:

La fonction $x \mapsto \sqrt{x}$ est définie est positive sur $[0; +\infty[$, sa limite en 0 est 0.

On déduit du théorème précédent :

$$\lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty.$$

ii. Cas des fonctions polynômes et rationnelles à l'infini

<u>Activité</u>: Soit les fonctions f, g et h, définies sur \mathbb{R} par :

$$f(x) = \frac{x^3 - 2x^2 + x}{-x^2 + 2x - 7},$$
 $g(x) = \frac{2x - 1}{x^2 + x + 1}$ et $h(x) = \frac{2x^2 + 1}{x^2 + 1}$.

Déterminer les limites quand x tend vers + et vers $-\infty$.

d. Comportement asymptotique

i. Asymptotes horizontales

<u>Définition</u>: Soient une fonction f définie sur un intervalle de la forme $[a; +\infty[$ (respectivement $]-\infty$; a]) avec a un réel et \mathcal{C}_f sa courbe représentative.

Lorsque la fonction f admet pour limite en $+\infty$ (r. en $-\infty$) un réel k; c'est-à-dire:

$$\lim_{x \to +\infty} f(x) = k, \left(\mathbf{r}. \lim_{x \to -\infty} f(x) = k \right)$$

On dit que la droite d'équation y = k est asymptote horizontale à C_f au voisinage de $+\infty$ (r. $-\infty$).

ii. Asymptotes verticales

Définition: Soient f une fonction définie sur un intervalle de la forme $a; +\infty$ (ou $a - \infty; a$) avec a un réel et C_f la courbe représentative de la fonction f.

Lorsque la limites de f en a est égale à $\pm \infty$:

$$\lim_{x \to a} f(x) = \pm \infty$$

on dit que la droite d'équation x = a est asymptote verticale à C_f .

iii. Asymptotes obliques

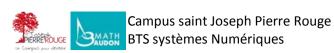
<u>béfinition</u>: Soient f une fonction définie sur un intervalle de la forme $]\alpha$; $+\infty$ [(ou $]-\infty$; α [) avec α un réel et \mathcal{C}_f la courbe représentative de la fonction f.

Lorsque la limite de (f - y) en $\pm \infty$ est égale à 0 :

$$\lim_{x \to \pm \infty} (f(x) - (ax + b)) = 0$$

on dit que la droite d'équation y = ax + b est asymptote oblique à C_f .

 \triangle Activité: Donner les asymptotes des fonctions f, g et h de l'activité précédente.



e. Nombre dérivé et fonction dérivée

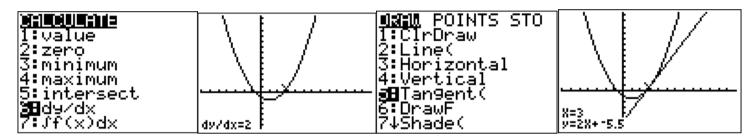
i. Nombre dérivé en a

<u>béfinition</u>: Soit une fonction f définie sur un intervalle I. On appelle nombre dérivé en a, le coefficient directeur de la tangente à f en le point d'abscisse a.

Exemple : On a représenté une fonction, faites bouger l'abscisse a du point M, on a affiché le coefficient directeur de la tangente. (<u>lien</u>),

 \blacksquare Sur la calculatrice, dans le menu CALCUL (image 1 et 2) il est possible de faire afficher le nombre dérivé d'une fonction en un point (3 sur l'exemple : f'(3) = 2).

En allant dans le menu DESSIN (image 3 - 4) on peut faire afficher la tangente à la courbe ainsi qu'une équation de cette tangente (y = 2x - 5.5)



 \sqsubseteq (bouger le point b) Remarque : Le nombre dérivé au point d'abscisse A(a; f(a)) est la limite des coefficients directeurs de la droite (AB) lorsque B se rapproche de A.

$$f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a}.$$

ii. Fonctions dérivées

a) Fonction de références

Théorèmes: Soient k, a et b des constantes réelles et n un entier naturel non nul.

Ensemble de définition de f	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}^*	R ⁺	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}^{*+}
f(x)	k	ax + b	x^2	x^n	$\frac{1}{x}$	\sqrt{x}	cos x	sin x	e ^x	ln x
f'(x)	0	а	2 <i>x</i>	nx^{n-1}	$-\frac{1}{x^2}$	$\frac{1}{2\sqrt{x}}$	$-\sin x$	cos x	e ^x	$\frac{1}{x}$
Ensemble de définition de f'	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}^*	R+*	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}

b) Opérations sur les fonctions

<u>Théorèmes</u>: Soient u et v deux fonctions de la variable x dérivables sur un intervalle I, k une constante réelle et n un entier naturel non nul.

f	u+v	k u	u.v	$\frac{1}{u}$	$\frac{u}{v}$	u^n	$\cos(ax+b)$	$\sin(ax+b)$
f'	u' + v'	k u'	u'v + uv'	$-\frac{u'}{u^2}$	$\frac{u'v - uv'}{v^2}$	$n u'u^{n-1}$	$-a\sin(ax+b)$	$a\cos(ax+b)$

c) Composition de fonctions

Théorème: Soient une fonction u définie et dérivable sur I un intervalle réel et n un entier naturel non nul. Pour tout réel $x \in I$

$$\left(\left(u(x)\right)^n\right)'=n\times u'(x)\left(u(x)\right)^{n-1}.$$

Théorème: Soit une fonction u définie et dérivable sur I un intervalle réel. Pour tout réel $x \in I$ $\left(e^{u(x)}\right)' = u'(x)e^{u(x)}.$

Théorème: Soit une fonction u définie, strictement positive et dérivable sur I un intervalle réel. Pour tout réel $x \in I$

$$\left(\ln(u(x))\right)' = u'(x)\ln(u(x)).$$

d) <u>Variation et dérivée</u>

 $ule{}$ $ule{}$ Théorème: Soit une fonction f définie et dérivable sur I un intervalle réel.

Pour tout x d'un intervalle J_0 $f'(x) \ge 0$ si et seulement si f est croissante sur J_0 .

Pour tout x d'un intervalle J_0 $f'(x) \le 0$ si et seulement si f est décroissante sur J_0 .

f. Parité et périodicité

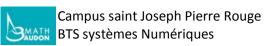
i. <u>Parité</u>

a) Fonction paire

<u>Définition</u>: On dit qu'une fonction f est **paire** si pour tout réel x du domaine de définition f(-x) = f(x).

<u>Propriété</u>: La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Exemple: Les fonctions $x \mapsto 3x^2 + x^4$; $x \mapsto \frac{1}{x^4 + 7x^6}$; $x \mapsto \cos x$ sont des fonctions paires.



b) Fonction impaire

<u>Définition</u>: On dit qu'une fonction f est impaire si pour tout réel x du domaine de définition f(-x) = -f(x).

Propriété : La courbe représentative d'une fonction impaire est symétrique par rapport au point
 O.

Exemple: Les fonctions $x \mapsto x^3 + 2x^5$; $x \mapsto \frac{1}{x + 2x^3}$; $x \mapsto \sin x$ sont des fonctions impaires.

ii. Périodicité

 $\underline{\qquad}$ **Définition**: On dit qu'une fonction f est périodique de période T lorsque pour tout x réel du domaine de définition:

$$f(x+T)=f(x).$$

Propriété : Soit f une fonction de période T alors pour tout réel x du domaine de définition et pour tout entier naturel n :

$$f(x+nT)=f(x).$$

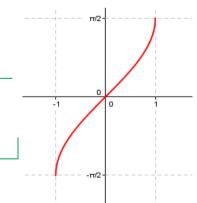
Exemples : Les fonctions circulaires $\sin \cos$ sont périodiques de période 2π .

II. Fonction circulaire réciproque.

a. Fonction arcsin

∑ Définition : La fonction \arcsin est définie sur [-1;1] tel que pour tout $x \in [-1;1]$ et pour tout $y \in \left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ on ait :

$$\arcsin(x) = y \qquad \Leftrightarrow \qquad x = \sin(y)$$

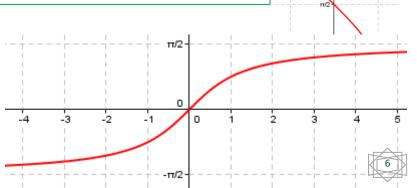


b. Fonction arccos

<u>béfinition</u>: La fonction arccos est définie sur [-1;1] tel que pour tout $x \in [-1;1]$ et pour tout $y \in [0;\pi]$ on ait :

$$arccos(x) = y \iff x = cos(y)$$

c. Fonction arctan



<u>Définition</u>: La fonction \arctan est définie sur $\mathbb R$ tel que pour tout $x \in \mathbb R$ et pour tout $y \in \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[$

on ait:

$$\arctan(x) = y \qquad \iff \qquad x = \tan(y)$$

$$ightharpoonup$$
 Propriété: Pour tout nombres réels x ,

$$(\arctan(x))' = \frac{1}{1+x^2}.$$